Article 13216

Title of the article

INFLUENCE OF NON-STATIONARY ELECTROLYSIS MODES
ON COPPER-TIN ALLOY COATINGS’ PROPERTIES

Authors

Glebov Maksim Vladimirovich, Head of laboratories, sub-department of mechanical engineering technology, Penza State University (40 Krasnaya street, Penza, Russia), mac-simka@mail.ru
Kireev Sergey Yur'evich, Candidate of engineering sciences, associate professor, sub-department of chemistry, Penza State University (40 Krasnaya street, Penza, Russia), Sergey58_79@mail.ru

Index UDK

621; 66.087.7

DOI

10.21685/2072-3059-2016-2-13

Abstract

Background. The research object is copper-tin alloy coatings, obtained by the electrochemical method; the research subject is the processes of copper-tin alloy coating electrodeposition at stationary and non-stationary deposition modes, such as cathode vibration and alternating magnetic field application over an electrolyte. The aim of the work is to study the influence of various modes of electrolysis (cathode vibration and alternating magnetic field application over an electrolyte) on physicalmechanical, electrical and corrosion properties of copper-tin alloy coatings.
Materials and methods. The obtained coatings’ composition was researchd by the methods of spectrophotometry and gravimetry. Operating properties of coatings, such as adhesion strength, microhardness, wear resistnace, transient electric resistance, solderability, corrosion resistance in various media, were investigated using standard and generally recognized methods.
Results. The authors revealed an interrelation of operation properties of the copper- tin alloy coating (microhardness, solderability, transient resistance, corrosion resistence) and stationary and non-stationary electrolysis modes, allowing to form coatings with a set combination of properties. The researchers obtained results of corrosion tests determining a range of application of the copper-tin alloy.
Conclusions. The research has established that non-stationary electrolysis modes, such as cathode vibration and alternating magnetic field application over an electrolyte promote formation of copper-tin alloy galvaniccoatings with a wide range of tin content in the alloy, therefore impacting the propertie thereof. It has been experimentally proved that cathode vibration and alternating magnetic field application over anelectrolyte leads to formation of coppe-tin alloya coatings that feature low and time-stable transient resistance, good solderability and high corrosion resistance. These allow to use the given coating as low-level contact coatings, as well as solder coatings, including for printed circuit board production.

Key words

copper-tin alloy, non-stationary electrolysis modes, cathode vibration, magnetic field, operating properties, microhardness, solderability, transient electric resistance, corrosion resistance.

Download PDF
References

1. Kovenskiy I. M., Povetkin V. V. Metallovedenie pokrytiy: ucheb. dlya vuzov [Coating materials science textbook for universities]. Moscow: SP Intermet Inzhiniring, 1999, 296 p.
2. Zenin V., Boyko V., Kastrblev A., Tkachenko A., Khishko O. Tekhnologii v elektronnoy promyshlennosti [Technologies in electronic industry]. 2008, no. 8, pp. 52–56.
3. Kireev S. Yu. Korroziya: materialy, zashchita [Corrosion: materials, protection]. 2015, no. 8, pp. 7–12.
4. Naumov L. V. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nayki [University proceedings. Volga region. Engineerings sciences]. 2013, no. 1 (25), pp. 76–84.
5. Kireev S. Yu., Perelygin Yu. P. Mir gal'vaniki [Galvanic world]. 2010, no. 2 (15), pp. 42–45.
6. Gamburg Yu. D. Elektrokhimicheskaya kristallizatsiya metallov i splavov [Electrochemical crystallization of metals and alloys]. Moscow: Yanus-K, 1997, 384 p.
7. Kireev S. Yu., Perelygin Yu. P. Gal'vanotekhnika i obrabotka poverkhnosti [Galvanic technology and surface treatment]. 2010, vol. 28, no. 4, pp. 19–26.
8. Kireev S. Yu., Perelygin Yu. P., Lipovskiy V. V., Yagnichenko N. V., Kubenko Yu. N. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2010, no. 1 (13), pp. 134–145.
9. GOST 24606.3-82. Izdeliya kommutatsionnye, ustanovochnye i soediniteli elektricheskie. Metody izmereniya soprotivleniya kontakta i dinamicheskoy i staticheskoy nestabil'nosti perekhodnogo soprotivleniya kontakta [State standard 24606.3-82. Commutation, wiring and connecting electrical devices. Measurement methods of contact resistance and dynamic and static instability of contact transient resistance]. Moscow:Izd-vo standartov, 1984, 8 p.
10. Kireev S. Yu., Kireeva S. N., Perelygin Yu. P., Jaskula Marian Pokrytiya i obrabotka poverkhnosti: sb. st. [Coatings and surface treatment collected papers]. Moscow, 2011, pp. 35–36.
11. GOST 9.302-88. Pokrytiya metallicheskie i nemetallicheskie neorganicheskie. Metody kontrolya [State standard 9.302-88. Metallic and non-metallic non-organic coatings. Monitoring procedures]. Moscow: Izd-vo standartov, 1988, 65 p.
12. GOST 20.57.406–81. Izdeliya elektronnoy tekhniki, kvantovoy elektroniki i elektrotekhnicheskie. Metody ispytaniya [State standard 20.57.406-81. Devices of electronic technology, quantum electronics and electrotechnical devices. Testing methods]. Moscow: Izd-vo standartov, 1991, 216 p.
13. GOST 28235–89. Osnovnye metody ispytaniy na vozdeystvie vneshnikh faktorov. Ch. 2. Ispytaniya. Payka. Ispytanie na payaemost' metodom balansa smachivaniya [State standard 28235-89. Basic external factor impact testing. Part 2. Testing. Solder. Solderability testing by the moistening balance method]. Moscow: Izd-vo standartov, 1989, 12 p.
14. Kireev S. Yu., Perelygin Yu. P. Gal'vanotekhnika i obrabotka poverkhnosti [Galvanic technology and surface treatment]. 2011, no. 2 (19), pp. 52–57.
15. Spravochnik po payke [Soldering reference book]. Eds. S. N. Lotsmanov, I. E. Petrunin, I. E. Frolov. Moscow: Mashinostroenie, 1975, 407 p.
16. GOST 9.905–82. Metody korrozionnykh ispytaniy [State standard 9.905-82. Corrosion testing methods]. Moscow: Izd-vo standartov, 1983, 5 p.
17. GOST 27597–88. Izdeliya elektronnoy tekhniki. Metod otsenki korrozionnoy stoykosti [State standard 27597-88. Electronic devices. Method of corrosion resistance estimation]. Moscow: Standartinform, 2006, 21 p.
18. GOST 9.308–85. Edinaya sistema zashchity ot korrozii i stareniya. Pokrytiya metallicheskie i nemetallicheskie neorganicheskie. Metody uskorennykh korrozionnykh ispytaniy [State standard 9.308-85. The unified system of corrosion and aging protection. Metallic and non-metallic non-organic coatings. Methods of accelerated corrosionn testing]. Moscow: Izd-vo standartov, 1987, 22 p.
19. Fedot'ev N. P., Bibikov N. N., Vyacheslavov P. M., Grilikhes S. Ya. Elektroliticheskie splavy [Electrolytic alloys]. Moscow: Mashgiz, 1962, 312 p.

 

Дата создания: 30.09.2016 08:54
Дата обновления: 30.09.2016 14:23